Mathematical Modelling of DNA Replication Reveals a Trade-off between Coherence of Origin Activation and Robustness against Rereplication

نویسندگان

  • Anneke Brümmer
  • Carlos Salazar
  • Vittoria Zinzalla
  • Lilia Alberghina
  • Thomas Höfer
چکیده

Eukaryotic genomes are duplicated from multiple replication origins exactly once per cell cycle. In Saccharomyces cerevisiae, a complex molecular network has been identified that governs the assembly of the replication machinery. Here we develop a mathematical model that links the dynamics of this network to its performance in terms of rate and coherence of origin activation events, number of activated origins, the resulting distribution of replicon sizes and robustness against DNA rereplication. To parameterize the model, we use measured protein expression data and systematically generate kinetic parameter sets by optimizing the coherence of origin firing. While randomly parameterized networks yield unrealistically slow kinetics of replication initiation, networks with optimized parameters account for the experimentally observed distribution of origin firing times. Efficient inhibition of DNA rereplication emerges as a constraint that limits the rate at which replication can be initiated. In addition to the separation between origin licensing and firing, a time delay between the activation of S phase cyclin-dependent kinase (S-Cdk) and the initiation of DNA replication is required for preventing rereplication. Our analysis suggests that distributive multisite phosphorylation of the S-Cdk targets Sld2 and Sld3 can generate both a robust time delay and contribute to switch-like, coherent activation of replication origins. The proposed catalytic function of the complex formed by Dpb11, Sld3 and Sld2 strongly enhances coherence and robustness of origin firing. The model rationalizes how experimentally observed inefficient replication from fewer origins is caused by premature activation of S-Cdk, while premature activity of the S-Cdk targets Sld2 and Sld3 results in DNA rereplication. Thus the model demonstrates how kinetic deregulation of the molecular network governing DNA replication may result in genomic instability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Modelling of DNA Replication

Before a cell divides into two daughter cells, its entire genetic material has to be copied without errors and exactly once. In eukaryotic cells, a vast amount of replication origins exists that enable the replication of the DNA to initiate simultaneously from many origins in parallel, thereby contributing to a relatively rapid duplication of the genome. The initiation of DNA replication from t...

متن کامل

The ATR-mediated S phase checkpoint prevents rereplication in mammalian cells when licensing control is disrupted

DNA replication in eukaryotic cells is tightly controlled by a licensing mechanism, ensuring that each origin fires once and only once per cell cycle. We demonstrate that the ataxia telangiectasia and Rad3 related (ATR)-mediated S phase checkpoint acts as a surveillance mechanism to prevent rereplication. Thus, disruption of licensing control will not induce significant rereplication in mammali...

متن کامل

Cyclin and cyclin-dependent kinase substrate requirements for preventing rereplication reveal the need for concomitant activation and inhibition.

DNA replication initiation in S. cerevisiae is promoted by B-type cyclin-dependent kinase (Cdk) activity. In addition, once-per-cell-cycle replication is enforced by cyclin-Cdk-dependent phosphorylation of the prereplicative complex (pre-RC) components Mcm2-7, Cdc6, and Orc1-6. Several of these controls must be simultaneously blocked by mutation to obtain rereplication. We looked for but did no...

متن کامل

Negative regulation of Cdc18 DNA replication protein by Cdc2.

Fission yeast Cdc18, a homologue of Cdc6 in budding yeast and metazoans, is periodically expressed during the S phase and required for activation of replication origins. Cdc18 overexpression induces DNA rereplication without mitosis, as does elimination of Cdc2-Cdc13 kinase during G2 phase. These findings suggest that illegitimate activation of origins may be prevented through inhibition of Cdc...

متن کامل

Deregulated Replication Licensing Causes DNA Fragmentation Consistent with Head-to-Tail Fork Collision

Correct regulation of the replication licensing system ensures that no DNA is rereplicated in a single cell cycle. When the licensing protein Cdt1 is overexpressed in G2 phase of the cell cycle, replication origins are relicensed and the DNA is rereplicated. At the same time, checkpoint pathways are activated that block further cell cycle progression. We have studied the consequence of deregula...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2010